skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wallman, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Blow flies (Diptera: Calliphoridae) occur worldwide and exhibit a wide range of larval feeding habits, including saprophagy, coprophagy, parasitism and predation. Understanding their biology is critical for medical and veterinary science and ecology. Calliphorids thrive across a range of habitats and exhibit complex life histories, with larvae developing immersed in their food substrate, while adults are free‐living and have diverse feeding strategies. Some species have evolved specialized parasitic associations with vertebrate or invertebrate hosts, which are behaviors with important implications for agriculture and for understanding evolutionary transitions between saprophagy and parasitism. This study presents a comprehensive phylogenetic analysis of the Calliphoridae, utilizing 711 of 736 analysed nuclear genes, using anchored hybrid enrichment, from a global collection of blow flies and their relatives. Our results provide a robust and novel reconstruction of the evolutionary history of this group, pinpointing major transitions in larval feeding habits. We argue that saprophagy evolved independently multiple times from invertebrate parasitic ancestors, with vertebrate parasitism emerging from a number of different feeding strategies. These findings challenge prior hypotheses and offer new insights into the adaptive traits driving trophic specialization and diversification in this group. 
    more » « less
    Free, publicly-accessible full text available December 12, 2026
  2. Abstract Fire-generated tornadic vortices (FGTVs) linked to deep pyroconvection, including pyrocumulonimbi (pyroCbs), are a potentially deadly, yet poorly understood, wildfire hazard. In this study we use radar and satellite observations to examine three FGTV cases during high-impact wildfires during the 2020 fire season in California. We establish that these FGTVs each exhibit tornado-strength anticyclonic rotation, with rotational velocity as strong as 30 m s −1 (60 kt), vortex depths of up to 4.9 km AGL, and pyroCb plume tops as high as 16 km MSL. These data suggest similarities to EF2+ strength tornadoes. Volumetric renderings of vortex and plume morphology reveal two types of vortices: embedded vortices anchored to the fire and residing within high-reflectivity convective columns and shedding vortices that detach from the fire and move downstream. Time-averaged radar data further show that each case exhibits fire-generated mesoscale flow perturbations characterized by flow splitting around the fire’s updraft and pronounced flow reversal in the updraft’s lee. All the FGTVs occur during deep pyroconvection, including pyroCb, suggesting an important role of both fire and cloud processes. The commonalities in plume and vortex morphology provide the basis for a conceptual model describing when, where, and why these FGTVs form. 
    more » « less